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Behaviour of macroscopic rigid spheres in Poiseuille flow 
Part 1. Determination of local concentration by statistical 
analysis of particle passages through crossed light beams 

By G. SEGRfit AND A. SILBERBERG 
Weizmann Institute of Science, Rehovoth, Israel 

(Received 6 November 1961 and in revised form 16 March 1962) 

An apparatus is described for determining particle passages through any selected 
point on a tube cross-section. The method depends on the simultaneous blocking 
out of two mutually perpendicular light beams by a particle passing through their 
common region. The coincidence is registered and counted electronically. At 
higher particle concentrations coincidences are also registered arising from a pair- 
wise occupation of the light beams by two particles. An analysis is presented 
showing that these pair coincidences can be allowed for exactly in terms of 
experimentally measurable quantities, 

The reliability and reproducibility of the method is discussed and illustrated by 
examples from sphere suspensions in Poiseuille flow. 

1. Introduction 
Radial displacements of spherical rigid particles carried along in Poiseuille 

flow have been suspected in the past. Several experimental observations tending 
to show their existence have been reported and theoretical reasons advanced to 
account for the phenomena. All theoretical discussions so far have predicted an 
inward shift of particles and for this, as well as for reasons of convenience, most 
observations involved a study of the concentration changes in layers nearest the 
tube wall. 

It was our aim to make the observation of particle motion as direct as possible 
and we used for this purpose an optical scanning device consisting of two mutually 
perpendicular light beams whose intersection could be made to test out all points 
on the tube cross-section. Photoelectric transducers and electronic counting 
circuits were used to register particle passages. A statistical analysis of the counts 
obtained in this way enabled us to derive the necessary data for an analysis of 
single particle behaviour. We had to distinguish between the blocking of both 
channels by a single particle (‘hits’), and the blocking of the two channels by 
the presence simultaneously of two particles, one in each channel (‘pair coin- 
cidences’). It was the former which we wanted to know but our direct measure- 
ments gave us their sum. A theory was developed (see $ 6 )  for this type of 
coincidence counting from which it appeared that simple additional measure- 
ments can be made to separate the ‘ hits ’ from the rest of the counts. 

t On leave from Cartiera Vita Mayer and Co., Milan, Italy. 
8-2 
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In  the following we shall give, first of all, a detailed description of the experi- 
mental arrangement; the flow system in $ 2, and the optical scanning device and 
photoelectric transducer in $3. The nature of the pulses which the apparatus 
yields is discussed in $ 4 and the method of counting and analysing themfollows 
in $5. 

In  $ 7  we describe a way of deriving more precisely defined concentration 
distributions from results which, due to our type of coarse scanning, are averages 
over relatively large regions. The controls we have carried out and the degree of 
coherence and reproducibility which can be obtained by this method are discussed 
in $8. 

In  Part 2 (SegrB & Silberberg 1962), the theoretical background will be 
analysed, and the results presented in full and discussed. It will be shown that the 
particles are displaced radially outwards from the centre and inwards from the 
wall, and that a stationary build up of concentration occurs at a radial position at  
about two-thirds tube radius (‘tubular pinch effect’) (Segr6 & Silberberg 1961). 

2. The flow system 
A schematic picture of the flow apparatus is given in figure 1. 
The flow tube is composed of two pieces of glass tubing, carefully chosen for 

their uniformity, having an internal diameter of 11.2 & 0.2 mm. -f The two pieces 
are situated one above and one below the optical system. The length of these 
pieces may be changed by substituting different tubes in order to perform the 
measurements at different distances E from the inlet. For a given total length of 
the tube I ,  + 1, (see figure 1) measurements were made alternately in downward 
flow and in upward flow, giving results a t  different values of E ,  1 = 1, and 1 = I, 
respectively. 

Two containers are connected to the flow tube, an upper container R, and a 
lower one R,, the transition section between tube and container being given a 
conical shape. The purpose of the containers is twofold, to feed the tube and to 
assure uniformity of the suspension. 

The suspensions were made up of polymethylmethacrylate spheres in media of 
equal density and different viscosities (17 to 400cP), prepared by mixing 
glycerine, 1,3-butanediol and water in various proportions. The particles were 
closely matched in diameter by passing them through a sieve, composed of a slit 
whose gap could be accurately adjusted. Calibrated photographs were used to 
determine the size distribution and the mean diameter of each fraction. 

Although the stability of the suspension is assured by careful matching of the 
density of the liquid with the density of the particles (kept always within 1 x0 of 
each other) concentration inhomogeneities are produced in the containers after 
passage of the sample volume through the tube. It is necessary therefore to 
employ stirring, and the liquid in the containers was generally kept in constant 
motion. 

The conical mouth sections at the ends of the tube and the system of applying 
the pressure to the suspension, either through the free meniscus in the upper 

In our preliminary note (SegrB &, Silberberg 1961) the inner tube diameter was 
erroneously given as 11.8 mm. 
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container or through a thin flexible membrane in the lower one, is intended to 
feed the tube with a suspension as homogeneous as possible, in a flow pattern as 
close to the ideal as could be attained. A column of water is used to counter- 
balance the suspension across the membrane in container R,. 
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FIGURE 1. Schematic view of the flow system. R,, R,, R,, containers; S, scanning device; 

G, joints; U, and U,, nozzles for control of pressure p ;  HI and H,, pipette marks. 

The flexible tube containing this water counterweight terminates in the con- 
tainer R,, which measures the flow volume v,  between the two marks H, and H,. 
The volume actually pushed into the tube in an experiment was about 20 yo 
larger than the measured volume due to the fact that the motion was started 
above the mark H, and was stopped below H,. This prevents the initial and final 
phases of the motion, where large accelerations are present, from being included 
in the measurement. The actual time of flow T corresponded to the interval 
elapsing between the passage of the meniscus from H, to H,. The volume of flow 
was 660 cm3 and the time of flow varied between 7.5 and 120 sec depending on the 
pressure difference applied, the liquid viscosity and the length of the flow tube. 
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The height of the container R, is regulated in such a way that the liquids are in 
barostatic equilibrium at a position halfway between H, and H,. The average 
hydrostatic head is thus zero. The constant-pressure system designed to provide 
the driving head is composed of a water suction pump, a mercury manostat, 
a mercury barometer and a large aspirator acting as pressure stabilizer. This 
system may be connected to one of the containers R, or R,, while the other is 
connected to the atmosphere through suitable nozzles U, or U,. The choice of the 
nozzle and of the pressure p determines the flow velocity which will be obtained. 

At the inlet of the tube, after a short transition length, the liquid reaches the 
parabolic, axially symmetric velocity profile, corresponding to Poiseuille motion; 
we shall show in 5 8 the experimental evidence for this fact. 

3. The optical system 
Two strong perpendicular light rays, well collimated, for the scanning of the 

chosen cross-section of the tube, were obtained by means of the system shown 
schematically in figure 2. The lamp A is a Sylvania concentrated-arc lamp of 

. .  . .  A 

FIGURE 2. Schematic view of. optical system. A, Light source; L, collimating lens; 
P, semi-transparent prism; R, reflecting prisms; Q, apertures; C, cylinder lenses; 
D, movable square diaphragms; F, photocells. 

25W, fed from a battery of accumulators; the point crater coincides with the 
focus of the lens system L (Xenon F: 1.5;f = 2.5 cm) which gives a circular parallel 
beam of about 2 cm diameter. The light is split into two perpendicular beams by 
means of the semi-transparent prism P. A totally reflecting prism bends each of 
these two beams towards the scanning device. A square aperture Q outlines a 
pencil of light which afterwards is concentrated (squeezed) in the vertical 
direction by means of a cylinder lens C. 
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We obtain in this way a very strong luminous image, less than 2 mm high and 
more than 1 cm wide, on the two faces of the scanning prism. Figure 3 shows this 
prism decomposed into its elements. At the centre we have the scanning section S, 
which consists of a Perspex segment 1.5 mm thick provided with a square hole of 
length of side equal to the inner tube diameter, within whose thickness the light 
rays are conveyed without distortion. It is believed that the small local deviation 
from a cylindrical cross-section in the tube does not affect the flow pattern. On 
the other hand, the use of such a plane parallel-walled section made it possible to 

P 
N 

FIGURE 3. Exploded view of scanning device. S, Square scanning section (Perspex) ; 
P, Perspex blocks; N, glass tube seab (brass). 

obtain uniform precise scanning of all positions on the cross-section. On the 
incident sides of S are two diaphragms D (figure 2) provided with a square hole of 
side 1 mm which may be displaced horizontally with the help of a micrometer 
screw. We shall use a rectangular (x, y, 2)-co-ordinate system, based on the centre 
of the scanning section, such that the z-axis points in the direction of the mean 
flow and the x- and y-axes lie in the plane of the scanning section parallel toits sides. 

A scale divided in half millimetres and a magnifying glass help in determining 
the position (x, y) of the diaphragm centre, with a precision of ? 0.2 mm. On the 
emergent faces of the prism, black masking tape eliminates stray light. The result- 
ing ray is therefore sufficiently collimated to ensure that the sensitive volume, for 
any of the two scanning directions, has the shape of a prism having as axis a dia- 
meter or a chord of the cross-section of the flow tube. 

The optical system is completed by the two phototubes F (figure 2) (type 5652) 
and a series of gray filters (not shown) with which to control the light intensity of 
the two beams. These may be regulated jointly or separately, to compensate 
intensity variations in the lamp or a lack of symmetry in the two optical paths. 

The particles to be counted, being of transparent polymethylmethacrylate, 
needed to be treated in order to increase the contrast with the suspending liquid. 
We achieved good visibility by roughening the surface of the particles with a 
mixture of HC1, HNO, and water in suitable proportions. Only for the smallest 
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particles were the results not completely satisfactory. In order not to damage 
their shape, very rapid treatment was given and a portion of the particles remained 
too clear to be counted. 

4. Character of the pulses 
When no portion of a particle lies in one of the beams going through the flow 

tube the corresponding photocathode receives the total luminous flux, and at the 
terminals of the load resistor in the cell circuit we have the potential difference 
H, (figure 4). 

Total 
darkness 

Discriminator 

Volts 

electric potential during pulse; T, pulse duration. 
FIGURE 4. Pulse characteristics. H,, Maximum photoelectric potential; H ,  - H ,  photo- 

When a spherical opaque particle, having a diameter of about 1 mm, crosses the 
light beam, a part of the light will be intercepted. The shadow will initially 
increase until it  reaches a maximum, and then will decrease again to zero upon 
the completed egress of the particle from the light beam. In order to obtain a 
signal it is sufficient that the centre of the particle follows a trajectory passing at  
a distance S < a + i d  from the beam axis (see figure 5), where a is the radius of the 
particles and d the width of the light beam, that is the aperture of the diaphragm 
(1 mm). The need for eliminating the background noise, and the desire sometimes 
to reduce as much as possible the width of the sensitive area, induces one to use a 
more or less high level of discrimination, that is to bias the electronic circuit in 
such a way that signals which do not reach a prescribed height are eliminated. 
The ‘sensitive region’ outlined in this way is the region which a particle must 
cross in order that its passage will be registered. Its width Ax < d+2a thus 
depends not only on the dimensions of the particles and of the diaphragm but also 
on the light intensity and on the discrimination threshold employed. The 
smallest Ax, and therefore the best resolution, could be obtained in principle by 
matching the diaphragm aperture to the particle diameter, and by using a high 
level of discrimination. However, small fluctuations in this level would produce 
large relative errors in the counts. In  general we preferred to use rather wide Ax, 
for which reproducibility was much more satisfactory. 

The second feature of the signal which interests us is its duration 7, defined as 
the time that it remains above the discrimination level (see figure 4). This 
magnitude depends in the first place on the parameter S as well as on the other 
variables determining the height of the signal, and in the second place on the 
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velocity of the particles, which we assume coincides, in first approximation, with 
the local fluid velocity, V ( r )  = ZV,[l - (r/R)2].  Here V, is the average velocity of 
flow, r is the radial particle position and R is the tube radius. 

We now consider the ‘sensitive volume ’, that is the volume where the presence 
of a particle in the beam produces a shadow above the threshold level. The 
‘sensitive volume’ is a prism with a rather complex cross-section, having in the 
x direction a variable thickness Ax, roughly equal to Ax at the centre but much 
smaller at the 

/ 

Photocathodes 

FIGURE 5. Details of light paths in scanning section. d, Diaphragm opening; a, particle 
radius; 8, particle position relative to beam axis. 

From a statistical point of view we are interested in the number of particle 
passages through each of the sensitive regions in the (2, y)-plane, numbers which 
we will call N,(x) and N,(y) depending upon the two observation directions. In  
addition we want to know the number N, of coincidences, that is of overlapping 
pulses in the two channels. 

In  the second place we are interested in knowing the ‘presence number’ of 
particles in the sensitive volume, which is measured by the fraction of the time 
that this volume is occupied by at least one particle. This presence number, or 
occupation probability, p ( x )  or p ( y )  for each channel respectively, may be 
obtained by summing the durations T of all the signals in that channel for a 

p = (&)/T. given time of flow T :  

These are the magnitudes that the electronic circuit should measure. 

5. The electronic circuit 
The electronic circuit is essentially a coincidence circuit, which has the function 

of detecting and counting the simultaneous presence of a signal at the output of 
both phototubes. The tube performing this function is a pentode 6 BN 6 whose two 
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control grids receive the signals corresponding to the two light beams. The 
discrimination level for the signals is set by the amount of negative bias given to 
these grids and is controlled by suitable potentiometers. 

The detection of the ‘singles’, that is of the pulses generated by any one of the 
two phototubes, is performed by a pentode of the same type, one of whose control 
grids is grounded, corresponding to a permanent signal on that grid. To simplify 
the construction, only one detector of singles has been employed, and is used 
alternately with one or other of the two photocells. 

I U  

I %stage amplifier 
L ~ _ _  J 

FIGURE 6. Block diagram of counting circuit. 

In  order to measure the total duration of the signals, we again make use of the 
coincidence circuit, by sending one of the signals to input 1 and a square wave of 
known and sufficiently high frequency to input 2; the signal to be measured acts 
as a gate on the periodic oscillation, allowing the passage of a number of waves 
proportional to the pulse duration. Also this measurement is performed alter- 
nately for each one of the two observation directions. 

The diagram of figure 6 shows the different components of the circuit. From 
inputs 1 and 2 the signals are amplified by a double triode, the counts switch 
being placed between the two amplification stages. The pulses, amplified from 
about 1 V to about 40 V, go to the coincidence tube, while one, at will, of the two 
channels is connected to the ‘singles’ circuit. This is quite similar to the coin- 
cidence circuit but for the already-mentioned grounding of one of the control 
grids. By means of a switch, one of the grids of the coincidence tube may also be 
grounded and we obtain two identical circuits for calibration purposes. 

The signals emerging from the 6BN 6 are squared, differentiated, rectified and 
then fed to a double scaler, one section of which counts the coincidences A?, and 
the other the singles N,. The same scaler, with the two sections in cascade, to get 
a higher counting capacity, measures the ‘presence number ’, by counting the 
number of waves admitted by the ‘gate ’ action already described. 

These circuits worked very satisfactorily; great care was taken to avoid pick-up 
of external noise, double counting due to overshooting of the signals and noise 
due to the counts switch operation. 
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6. Statistical analysis of the counts 
If the concentration of the particles in the flow tube were constant everywhere, 

the number of particles passing a given point in unit time would be proportional to 
the velocity of the suspension there. As velocity has a parabolic distribution 
across the tube, if the suspension is Newtonian and the flow laminar, the number 
of particle passages should also be distributed according to a parabolic law. Our 
experiments show that a parabolic law of particle passages holds in general near 
the mouth of the tube for a short section beyond the inlet length. Farther away 

Y- 
Hit coinc. 

Pair coinc. I 
X 

FIGURE 7. Channel characteristics. 

from the mouth very different distributions are observed. As the Poiseuille 
character of the flow can be assumed to hold, in view of the fact that one is working 
with highly diluted suspensions and at rather low Reynolds numbers, our results 
tend to show that concentration rearrangements are taking place when the 
spheres move deeper into the tube. The purpose of this and the next section is to 
show how these concentration changes can be measured with the arrangement 
described. 

Let us consider a point (2, y) on the cross-section of the tube. This point is 
determined by a light ray parallel to the y-axis, at  a distance x from the centre, 
and by a similar ray orthogonal to it, a t  a distance y from the centre. The rays 
mark the axes of the sensitive regions of width Ax and Ay respectively which in 
the following we shall designate as ‘channel X ’  or ‘channel Y’ (see figure 7). 
‘ Occupation ’ of the channel by aparticle implies that its centreissituatedwithinit 
and that this presence will be detected electronically (see definition of Ax in $4). 

The electronic network counts a ‘ coincidence ’ every time that (at least) one 
particle occupies channel X while (at least) one (the same or another) particle 
occupies channel Y.  The coincidence is registered when such a situation first 
arises, independently of the subsequent duration of the simultaneous occupation. 
Let us call ‘hit coincidences’ those due to a single particle, ‘pair coincidences’ 
those due to two particles. 
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If the concentration were sufficiently low, ,we would regard pair coincidences 
as extremely unlikely and the total count of coincidences could be regarded as 
‘hits ’. For practical reasons, still to be discussed, such low concentrations could 
not be worked with. A statistical analysis will now be given showing that pair 
coincidences can be evaluated indirectly from the experiment, provided that we 
may assume that the simultaneous occupation of the channels by three particles 
is so unlikely as to be negligible. The range of concentrations which we have used 
satisfies this condition, and we shall therefore neglect third-order terms. 

Let us now define two functions at  each point of the cross-section of the tube, 
a function 

representing the number of particles per unit cross-section per second which pass 
(z, y), where V ( x ,  y) is the local velocity of the fluid and C(x ,  y) the local concentra- 
tion of particles, and a function 

representing the probability density that a particle will occupy the sensitive 
region of height Az, where ~ ( x ,  y) is the time spent by a particle in traversing the 
sensitive region at (x, y), so that 

AZ = 7(x, y) V ( x ,  y). (3) 

The probability w, of the simultaneous occupation of the sensitive region at  
two points 1 and 2 is thus given by 

~ , ( 1 , 2 )  = ~ ( 1 ) ~ ( 2 )  = ~(1)%(1)7(2)n(2). (4) 

If n,( 1,2) is the number of coincidences which arise per second between points 1 
and 2, and (T (  1,2)) is the average duration of a coincidence we have also 

w,(1,2) = nc(1,2)(7(1,a). (5) 

But 

so that it follows from equation (5), using (6), (4) and (2) that 

n,(l,2) = w(l)n(2)+w(2)n(l). (7) 

If we place point 1 in the X-channel and 2 in the Y-channel and integrate 
equation (7) over all sections of these channels which are not mutually shared, 
we find 

where n: is the number of undesired pair coincidence counts per second, nl is n 
(see equation (1)) integrated over the unshared channel region, and p‘ is w (see 
equation (2)) similarly integrated. The co-ordinate positions x and y are now the 
locations of the Y -  and X-channels respectively, and thus also of the common 
region. 

If Nh(x, y) is the desired number of particle passages at the point (x, y) during 
an experiment of T sec duration, Nc(x, y) the measured number of coincidences 

nl.(x,y) = 4 x ) p ’ ( y )  + 4 ( Y ) P ’ ( X ) ,  (8) 
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in the experiment, N,(x) and N,(y) the corresponding total number of single 
passages through each channel, and p(x) and p(y) the corresponding presence 
numbers (occupation probabilities) of each channel, we have the following 
relations : 

(9) 

N,W = T n 3 4  + W x ,  Y), 

w x ,  Y) = TnE(x7 Y) +N&, Y )  

(10) 

(11) 

(and corresponding equations for p(y) and N,(y)), from which, and equation (8) ,  
Nh(x7 y) can be found, 

In this equation Nh(x, y) appears also in the last term of the denominator of (12), 
which is thus a quadratic equation for Nh. As the negative terms in the denomi- 
nator are small compared with 1, Nh may be neglected, or replaced by N, without 
serious error. 

The value of r to be used in (9) and (12) is essentially the value of r at the point 
(x,y). As the mutually shared sensitive region is of finite dimensions, however, 
r actually represents an average taken over this area. 

The ratio TIT is not measured directly. It depends on the thickness AZ of the 
sensitive volume, which however is independent of the concentration distribution 
and the position of the test cross-section along the z-axis. If we assume that the 
concentration near the input is constant and given by C(x,y),,, = C,, we may 
write in zero approximation 

p ( ~ ) , = ~  = CoAxAxw,, N,(X),=~ = CoAxr(x) w,T, 

where wa: is the length of the channel and V ( x )  is the average velocity over the 
channel. We have therefore 

and similarly 

For our parabolic field of velocities we have 

v(y) 2 R2-y2 -~ V ( 2 )  2 R2-x2 

V(x,y) - 3R2-(x2+y2)’ V(x,y) - 3R2-(x2+y2)’ 

The expressions (13) and (14) with the help of (15) permit two independent 
determinations of the ratio TIT in terms of magnitudes that our system is able to 
measure directly. As these calculations assume a constant particle distribution up 
to the wall of the tube it is preferable to make either x or y zero and to use either 
expression (13) or (14) respectively. This reduces the error due to finite particle 
dimension to the minimum. 

We shall discuss in 5 7 how allowance may be made for the fact that the signal 
duration r(x, y) estimated as above may not correspond to the average r needed 
in equation (12). 
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Let us note again that the denominator of expression (12) is but slightly sensi- 
tive to inaccuracies in the negative terms, which are always small with respect 
to 1. Much stronger is the iduence of the experimental errors on the numerator 
in that formula, where in some instances the two terms 

are almost equal and the difference is of the same order of magnitude as the 
errors. Although in principle the second term which depends on C2 may be 
made very small by working at  very low concentrations, the limitations of the 
apparatus make it undesirable to reduce the concentration by too much. The 
number of counts recorded in each passage would be low, requiring a high number 
of repetitions in order to increase the statistical data. The long time factor 
involved wouId make it difficult to assure constancy of conditions throughout 
all the measurements. 

Bearing this in mind we have chosen concentrations as low as was practical 
for our experiments. We will discuss this point further in 0 8. 

The number of binary superpositions which occur within a single channel is 
of the same order as the number of pair coincidences between the two channels. 
The recorded number of 'singles' N, is therefore smaller than the true number 
N: of particles orossing the channel. A calculation on the same lines as that for 

7. Effect of finite channel width in the derivation of concentration 
In  the majority of our experiments the width of the channels represent a 

sizable fraction of the tube diameter. On the other hand, the concentration 
gradients are in many instances very large, and localized in rather narrow intervals 
of the tube radius. A discussion will now be given of how the resolving power of 
our system was utilized to a fineness beyond the apparent coarseness of the 
scanning procedure. 

Let us consider in the first place the effect of the finite dimensions Ax and Ay of 
the sensitive region in the case of a parabolic distribution of particle passages 
corresponding to a constant concentration C,. The number of hits Nh will be 
proportional to the volume of suspension flowing through the area AxAy: 

Taking V(X ,Y)  = 2Vm[1 - ( x ~ + ~ ~ ) / R ' ] ,  

we obtain Nh = COT[ V(Z, y) - V,{(Ax)'+ (Ay)2)/6R2] AxAY. 

The distribution deduced on the basis of Nh continues therefore to be parabolic 
and differs from the velocity distribution only by a constant correction. For 
instance, if Ax = Ay = 2 mm and R = 5.6 mm, the resulting scanning error is 2 yo 
of the counts at the centre of the tube. This is a systematic difference but its 
magnitude is negligible and in practice we have always neglected it. 
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In  the case of a non-homogeneous distribution of the concentration, the 
blurring effect is much more serious, and a suitable computing method is necessary 
in order to go back from the counts (corrected according to formula (12)) to the 
local true concentration. 

Let us restrict our analysis to the scanning of a diameter of the cross-section 
along the x-axis. If the distribution has radial symmetry, the gradient is directed 
along the x-axis, and we may neglect the variations in the transverse direction. 
Let us call 

f(x) = Q(x, 0 )  V(X, 0 )  T 

the density of hits per unit area per experiment corresponding to the abscissa x. 
Note that n = f / T  (equation (1)). The number of hits corresponding to the area 
AxAy around the point (x, 0 )  will be 

Displacing the position of the centre of the diaphragm from x to X + E ,  where 
e + Ax, the number of hits will change by the amount 

N~(x:+B)-&(x) = A ~ B [ ~ ( x + + E + + A x ) - ~ ( x + + E - & A x ) ] .  

From this we may deduce the recursion formulae: 

f(x) = f(x - AX) + {N,(x + +G - +AX) - N,(x - &B - &Az)} /A~B,  

f(x) = f (x + AX) - {Nh(x + &E+ &AX) - Nh(x - -& + &Ax)}/Ays. 

(18) 

(19) 

From either of these formulae we can construct, step by step, the functionf(x) 
starting respectively from the periphery of the tube, where f (x) = 0, or from the 
centre, where Nh practically always has a very flat extremum. This implies that 
f (x) also is practically constant for x close to zero and we may write 

f (x) = Nh(x)/AxAy as x + 0. 

This analysis presupposes the knowledge of the parameters Ax and Ay. In  
fact, they were in general deduced from the experimental curves by a method of 
trial and error. One superimposes the distributions that result independently 
from (18) and (19) and changes the parameters Ax and Ay until as good a fit as 
possible is obtained. 

Some simplifications of the problem are possible. For example, Ax and Ay may 
be treated as identical, which is permissible if the two discrimination levels have 
been carefully matched. In  some special cases, moreover, the determination of 
Ax is particularly simple: (a)  when the distribution is strictly parabolic; in this 
case the knowledge of the bulk concentration C,, and the number of hits at  the 
centre of the tube allows us to write 

  AX)^ = N,(O, 0)/2C0V,T; 

(5) when the concentration distribution is sharp; in this case the plot of Nh will 
show two very steep portions, whose distance apart on the x-axis is just the value 
of Ax in which we are interested (figures 9 and 11). 
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A final adjustment or check involves a back calculation of the N,-curve from 
the f-distribution obtained and comparison of it with the data. Similarly, f may 
be integrated over the cross-section and the integral compared with the known 
throughput of particles. 

We recall the problem already mentioned concerning the value of r/T to be 
introduced in formula (12). As was pointed out the value of this parameter at  
(2, y )  may differ from the average value in the region Ax Ay, which is required in 
equation (12). To estimate this we employ a first rough evaluation of the distribu- 
tionf(x) and calculate as the value to be used 

( r /T)  = C.f(x’)  7/T/ xf(x‘) (x’ = x ,  x 5 6,  x & 28, .. .), 
Ax Ax 

where the summation extends over the range Ax around x. 
In  view of the fact that there is central symmetry about the tube axis at  all 

cross-sections (a fact which we have verified, see next section) we are interested 
in f as a function of the radial position r only, where r = (x2 + y2)*. Our results 
therefore will be reported in terms of r. Note, moreover, that 

f ( r )  = TV(r)C(r) .  

In  order to derive C(r)  we must divide f by T V where, as already mentioned, 

V = 2Vm[1 - (r/.R)2] 

and TVm = 670 cm is a constant of the apparatus. 

8. Controls and discussion of typical results 

(a )  Symmetry about the axis and reproducibility 
In  a preliminary survey of the performance of the apparatus the symmetry of the 
distribution around the axis of flow has been checked by scanning along the two 
perpendicular diameters x = 0 and y = 0 and at  intermediate positions where 
neither x nor y were zero. These controls showed that the proper positioning of the 
stirrers was important and great care was always exercised to avoid errors due to 
this. In  subsequent measurements the scanning was confined to both positive 
and negative values of x along the diameter y = 0. 

We also tested the effect of variations of the shape of the conical section leading 
from thesupply container to the flow tube. Theresults were found to be unaffected 
by a widely differing choice of angle for the entrance cone. 

A typical series of measurements is shown in table 1. Every ‘experiment’ is 
composed of ten successivemeasurements of N, while the N, values are determined 
once for channel X and once for channel Y, that is five times each. We indicate 
by a number preceded by the letter S a series of such experiments, performed as 
just mentioned, and covering all positions along a diameter for a certain set of 
flow conditions, choice of I and discrimination level, i.e. Ax. In  the table we give 
only the averages with their standard errors, The only inconsistency between the 
results of positive and negative x values appears around about x = 2.5 mm. Here, 
however, we are in a region of very steep variation of counts, which more than 
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double in a displacement of the scanning position by half a millimetre. Slight 
misplacements of the diaphragm can thus lead to appreciable differences between 
results. 

Downward flow: distance from tube mouth I = 120 cm, flow time T = 10 see, particle 
diameter 2a = 1.21 mm,concentrationC, = 2 ~m-~,fluidviscosity = 340 cP, A z  = 1.9 111111. 

Experiment 
no. 

842 
865 
841 
864 
828 
840 
863 
837 
862 
836 
861 
835 
860 
833 
859 
866 
832 
834 
858 
867 
831 
857 
830 
856 
829 
855 
843 
854 
844 
853 
845 
852 
846 
851 
847 
850 
848 
849 

r 

0 
0 

- 0.5 
+ 0.5 
- 1.0 
- 1.0 
+ 1.0 
- 1.5 
+ 1-5 
- 2.0 
+ 2.0 
- 2.25 
+ 2.25 
- 2.5 
+ 2.5 
+ 2.5 
- 2.75 
- 2.75 
+ 2-75 
+ 2.75 

+ 3.0 
- 3.25 
+ 3.25 
- 3.5 
+ 3.5 
- 3.75 
+ 3,75 
- 4.0 
+ 4.0 
- 4.25 
+ 4.25 
- 4.5 
+ 4.5 
- 4.75 
+ 4-75 
- 5.0 
+ 5.0 

- 3.0 

N A N  
235 f 5 
225 f 6 
247 f 5 
238 f 3 
251 +_ 3 
246 f 3 
240f 11 
246 f 11 
242 k 5 
238 f 4.5 
249 f 6 
240 f 9 
240 f 7.5 
252 f 8 
243 f 12 
244 f 4.5 
235 4-5 
253 f 9 
223 f 9.5 
223 & 5 
260 f 5 
237 f 9 
243 f 4 
266 f 3 
255 f 7.5 
239 f 8 
248 rf: 6 
234 f 4.5 
237 k 6 
2 3 1 f 4  
241 f 9 
240 f 9 
265 f 10 
236 f 8 
- 
- 
- 
- 

N A r )  
236 f 5 
236 f 6 
246 f 10 
246 & 13 
244 f 6 
251 rf: 8 
256 f 7 
258 & 8 
257 f 7 
295 k 6 
292 f 4 
327 f 9 
309 +_ 8 

365 f 8 
348 f 8 
327 f 3.5 
342 f 7 
379 f 9 
360 f 5.5 
361 f 4 
379 & 7.5 
343 f 13.5 
346 f 9 
322 f 10 
293 f 9 
281 & 6 
238 f 5 
250 f 10-5 
205 f 14.5 
190 & 5 
134 f 4 
129 f 5 
43-3 & 7 
61.0 f 3 

0 
0 
0 
0 

TABLE 1. Experimental data for series S. 14. 

No(% 4 
24.4 & 1.3 
27.5 f 2.0 
27.4 & 1.0 
27.0 f 1.9 
31.1 & 1.9 
25.2 f 1.7 
30.1 f 2.5 
27.9 f 1.9 
33.1 f 1-7 
41-6 f 1.6 
37.6 f 1.6 
45.6 f 1.9 
43.3 f 2.0 

103-1 f 1.0 
74.4 & 3.2 
60.0 f 2.4 
87.0 1 2.9 

131.0 f 3.8 
107.0 f 3.7 
103.9 f 3.3 
129.1 f 2.3 
119-6 f 4.3 
130.2 f 3.7 
127.7 f 4.1 
124.7 f 3.7 
114-7 f 4.3 
111.7 f 2.2 
105.8 f 3.9 
105.6 f 3.7 
100.3 f 8.1 
93.6 f 2-8 
82.4 f 4.7 
41.7 3.8 
55.4 f 2.0 

0 
0 

0 
0 

~~ ~ ~~~ ~ 

Systematic misplacements of the diaphragm zero position have also been 
observed. In figure 8, for example, two full series of experiments are shown 
performed under identical conditions but some weeks apart in time during which 

9 Fluid Mech. 14 
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the apparatus was disassembled and the suspension replaced. The first series are 
represented by points + and - depending on whether the scanning position was 
to the right or left of the tube centre and the second series by points 0 and 0 
similarly defined. All points can be brought to almost perfect superposition by 
systematic shifts of the zero + mm for the first series and - & mm for the second. 

We may conservatively assume that the error on the abscissa is never larger 
than 0-35 mm in single experiments and 0.2 mm on the average. As for the errors 
on the ordinate, excluding the regions of steep variations, we see that they are 
of the order of 2 4 yo for the average N, values, while the dispersion of the points 
around these averages is of the order of J. 6 %. The results for N, are of course 
much better. 

2oc 

15C 

5( 

+ -  

8 
* 

FIGURE 8. Uncorrected coincidence counts N o  for series S. 18A and S. 18B; dependence on 
radial position T.  Concentration C ,  = 4 em-8; Ax = 1.5 mm; other variables as for S. 14, 
see table 1. -, S. 18A left of tube centre; +, S. 18A right of tube centre; 8, S. 18B left 
of tube centre; 0, S. 18B right of tube centre; ,S. 18A centre; 0, S. 18B centre. N ,  is the 
number of counts during the passage of the total test volume. 

The reproducibility of the presence numbers p has also been checked by 
repeating the same series of measurements at different times: in general the 
reproducibility was worse than that for N, and N,, in the sense that, upon 
repeating a series, the resulting distributions, while always very similar in shape, 
nevertheless have shown relative deviations by as much as 15 %. Taking into 
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consideration that the presence numbers depend also on Az, which is rather 
sensitive to the optical and electronic conditions, the appearance of systematic 
discrepancies is understandable. The probable error in p was thus set at 5 10 yo 
in all cases. 

An uncertainty of the same order is present also in the value of 7, but this 
matters very little. The total error resulting in the calculation of Nh from the 
denominator in formula (12) is never larger than 2 %. The total errors in Nh are 
typified by the ranges shown in figures 9 and 1 I.. 

160 

120 

Nh 

80 

40 

S. 18 

I I I I I I I A I 
0 1 2 3 4 5  

r (mm) 

r (mm) r (-1 
FIGURE 9 FIGURE 10 

FIGURE 9. Derived hit coincidence counts Nh and hit densityf for series S. 18; dependence 
on radial position r.  The lines indicate the standard error in Nh. Full line: reconstructed 
curve of Nh using thef-histogram shown. Nh andf refer to the passage of the total test 
volume. 

FIGURE 10. Presence number p and total number of single passages N: as a function of 
radial position r for series S. 18. Points are the experimental results; lines are the 
reconstructed curves using thef-histogram of figure 9. N: refers to the passage of the total 
test volume. 

Figure 9 shows the relation between the Nh values (points) and the function f ,  
computed from the data as explained in $ 7  and represented by the hatched 
histogram. The full curve in the figure is obtained by integration of the histogram 
according to equation (17) and checks very well with the experimental points. 

A further important check is made by reconstructing, by numerical integration, 
9-2 
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S. 14 

I 2 3 4 5 

( n - 4  
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v 
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FIGURE 11. Derived hit coincidence count Nh and hit densityf for series S. 14 and S. 16; 
dependence on radial position r.  (For data in case S. 14 see table 1; S. 16 has been per- 
formed under the same conditions but with smaller Ax.) Standard errors in Nh are 
indicated. Full lines reconstructed fromf. Note that the twof-histograms match sincef is 
independent of discrimination level. As the flow condition in series S. 18, figure 9, were 
similar, the histograms in figure 9 can also be compared with the above. Note however 
that series S. 18 was done at  double the concentration of series S. 14 and S. 16. 
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the curves of the singles Ni and of the presence numbers p from the f distribution 
obtained (figure 10). 

( b )  Effect of the channel width Ax 
Some series of measurements have been repeated with two different discrimina- 
tion levels, resulting in different channel widths Ax. The reduction in the area of 
the sensitive region reduces the total count, and in the same proportion reduces 

r = O  

0 '  I I I I 

T r = 2  I 
15 

10 G 
a- 

5 

@t 

10 - 
r = 2  

40 
T 

2ot 
10 , 

r = 3.5 I 

FIGURE 12. Concentration dependence of reduced total and hit coincidence counts for 
two L,-values (see Part 2) .  (a) L, = 8.6 downwards; (b )  L, = 2.2 upwards. 0 ,  Nc/Cb; 
0, N,/C,. Full heavy line, derived from equation (20). Intercept level shown by heavy 
dotted line gives Nh/Co-value expected. Thin lines are confidence limits. 
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the number of pair coincidences. The f-distribution, however, which depends only 
on the flow variables, should be the same in both cases. The results of two such 
series of measurements are shown in figure 11. Such differences as occur in the 
f-distribution near its maximum fall within the precision that we may expect in 
the determination of r. The relatively large difference in the region of small r 
values is probably due to the large error associated with the numerator of 
equation (12). 

The total area bounded by the f-distribution and the r-axis should be nearly 
equal to the number n of particles entering the tube during an experiment. In  
the case of figure 11, n = 1320, as the flow volume is 660 cm3 and the concentration 
C, is 2 part./cm3. 

The values obtained by integration are n = 1240 for S. 14, and n = 1120 for 
S. 16. The agreement may be regarded as rather satisfactory. 

(c)  Concentration dependence 
A change in the bulk concentration C, may affect the number of counts both due 
to particle interaction and for statistical reasons. In  order to separate these two 
questions, we will first assume that no interaction between the particles occurs, 
so that the concentration at any point in the flow tube is due t'o a linear super- 
position of independent particle trajectories. This is justified at the low concen- 
tration at which we are working, as we will prove more precisely later. 

In  this case Nhr N," and in first approximation also p and N, are proportional 
to C,. We have thus Nh = N i  C,, p = poco, N, = N;  C,, where N i ,  po and N! are the 
values corresponding to C, = 1. 

We now want to check the statistical analysis of $6.  From equation (12) we 
have upon rearranging 

N, = NiCo+ [ N ~ ~ ~ + N ! , P ~ - N ~ ( ~ ~ + ~ ~ ) - ( ~ / T ) N ~ ( N ~ ~ + N ~ ~ ) ] C ~  (20) 

and the plot of NJC, vs C, should be a straight line. 
This has been checked using four different concentrations from C, = 0.25 to 

C, = 4 part./cm3, at  three distances from the axis and two flow conditions. In  
figure 12 are shown, plotted against concentration C,, the results for Nc/C, and 
for Nh/Co, where Nh was calculated from (12). The heavy full lines are the repre- 
sentations of equation (20),using for slope and intercept the averagevalues for the 
four concentrations. The confidence limits indicated by the thin lines are derived 
from the standard errors of the different measurements. The horizontal dotted 
lines give the expected level for Nh/C,. The agreement between the lines and 
the experimental points is only approximate and there are indications that the 
highest concentration used may be on the border of what is permissible. 

In  order to demonstrate that the particle distributions are concentration- 
independent (within the range in which we are working) we have repeated the 
complete scanning for some hydrodynamic situations at two different concentra- 
tions, and the corresponding concentration distributions always agree very well. 

Figures 11 and 9, which show one of these checks, correspond respectively to 
C, = 2 and C, = 4 part./cm3. No significant difference seems to be present in the 
histograms representing the f-distribution. Other comparisons have been made 
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at lower concentrations and under different flow conditions. The comparison of 
the Nh values for two series S. 7 and S. 9, corresponding to particles of smaller 
radius and a t  concentrations C, = 1 and C, = 2 part./cm3respectively is illustrated 
in Part 2 (figure 4) of this paper. In  these experiments no concentration gradients 
have yet developed, and the distributions are very nearly parabolic (note that Nh 
is plotted against r2) .  

In  connexion with parabolic distributions we should mention a relation which 
is satisfied between the counts of singles and of hit coincidences at the centre, 
independently of Ax: 

[Ni(0)l2/Nh(O, 0) = (32/9)vmTR2C0 = 750C0. 

This relation besides being a check on the counting performance may be con- 
sidered also as a control upon the concentration actually present. For the two 
series just mentioned we obtain 

[N,t(0)l2/Nh(O, 0) = 615 and [N,l(O)lZ/Nh(O, 0) = 1335, 

i.e. C, = 0.82 and 1.78 respectively. The fact that C, as measured here is 
somewhat smaller than the nominal concentration may be due to some of the 
particles not being sufficiently opaque to be recorded. 

9. Conclusion 
It has been shown that the apparatus described is capable of delivering signi- 

ficant data for the number of particle passages per unit time a t  any level in the 
tube and at any point of the cross-section. We have examined the limits of 
reliability which, though they vary somewhat with conditions, are at all times 
such that the ‘tubular pinch’ effect described in Part 2 can be regarded as 
established in the cases which we have considered. 

While this technique cannot resolve the product of ‘particle concentration ’ 
times ‘local flow velocity ’ it is reasonable to assume that the flow pattern remains 
parabolic in all cases here considered. Direct evidence for this may be seen in the 
parabolic distribution measured near the tube mouth and from certain other 
experiments where particle velocity and position have been measured directly. 

In  this sense therefore the method allows one to calculate particle concentration 
everywhere in the tube and from it, as will be shown in Part 2 (SegrB & Silberberg 
1962), conclusions may be drawn about the particle trajectory. 

Acknowledgements are due to Mr M. Nutman of the Weizmann Institute who 
made the difficult glass parts of the apparatus. 
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